NOTATION

T, substrate temperature; Ty, initial substrate temperature; r and z, radial and axial coordinates; t, time; Q, heat-
radiation source power; A, thermal conductivity; a, thermal diffusivity; ry, radius of the heat radiation beam; J, and Jy,
» Stationary temperature; 3, local
speed of response; 7, time required for reaching half of the maximum excess femperature; Cp, specific heat; p, density.

Bessel functions of the zero and first order; ®, error integral; AT, excess temperature; T

LITERATURE CITED

O. S. Esikov and E. A. Protasov, Pis’ma Zh. Tekhn. Fiz., 15, No. 20, 11-14 (1989).

0. S. Esikov, A. 1. Krot, E. A, Protasov, et al., Inzh.-Fiz. Zh., 61, No. I, 136-140 (1991).

G. Karslow and D. Eger, Thermal Conductivity of Solids [Russian translation], Moscow (1964).

A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Special Functions [in Russian],

Maoscow (1983).

5. . G. Kozhevnikov and L. A. Novitskii, Thermophysical Properties of Materials at Low Temperatures: A Handbook
[in Russian], Moscow (1982).

6. V. F. Aliev, N. B. Brandt, and V. V. Moshchalkov, et al., Sverkhprovodimost’: Fizika, Khimiya, Tekhnika, 2, No.
5, 29-31 (1989).

7. V. G. Veselago, A. N. Golovashkin, and O. V. Ershov, Fiz. Tverd. Tela, 30, No. 6, 1817-1818 (1988).

bl

NUMERICAL METHOD FOR ANALYZING A STOCHASTIC
STATIONARY HEAT-CONDUCTION EQUATION WITH
RANDOM COEFFICIENTS

A. G. Madera UDC 536.2(075)

A numerical method is suggested for defining mathematical expectarion fields and the variance of a stochastic
remperature field which is described in the stationary case by a stochastic hear conduction equation and
boundary conditions with random cocfficients. Random coefficients of the stochastic marhematical model may
obey arbitrary truncared distribution laws. An example of using the developed method is presented.

Introduction. Real temperature distributions in real objects are stochastic. This fact is caused by the randomness of
the parameters and characteristics determining a temperature ficld. Such parameters and characteristics as powers of sources
and sinks of heat, thermal conductivity coefficients of a body, coefficients of heat transfer from a body surface into a
medium, environment temperature, gaps between contacting bodies, etc., may be random and have a significant statistical
scatter. The stochasticity of these parameters and characteristics is a consequence of the random technological scatter and
random fluctuations of the parameters characterizing heat transfer between the object and the medium.

In engineering practice the temperature mathematical-expectation and temperature variance fields are the most
important probability characteristics of the stochastic temperature distribution jn objects. Having available these probability
characteristics, one can determine the fields of confidence intervals in the object. The real values of temperatures (which may
oceur in practice) will be arranged inside these intervals,

At present, there exist the following numerical methods for analyzing stochastic temperature fields in a. body:
perturbation theory methods [1]; the finite-element method for a differential equation with the coefficient of an unknown and
the free term both being white Gaussian noise [2]; and the method of the stochastic Green’s function [3, 4]. However, the
perturbation theory methods are applicable only in the case when random fluctuations of the parameter are much smaller than
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Fig. 1. Dimensionless distributions of the mathematical expectation 8, the
r.m.s. deviation og and the upper 95% confidence boundary ©, for the
stochastic temperature field in a three-layer plate.

its mathematical expectation value. In the finite-element method [2], one considers the equation with the zero first-order
boundary condition and the deterministic coefficient of the second derivative. Besides, this method is developed for the
randomnesses of the white Gaussian noise type, which fit the real randomnesses not always well. The method of the
stochastic Green’s function is used only when Green’s function may be constructed analytically, i.e., for a very narrow class
of problems. There are no effective numerical methods that we needed for the analysis of stochastic three-dimensional
temperature fields in regions of complex form which are described by the stochastic heat conduction equation and arbitrary
boundary conditions with random coefficients, obeying real distribution laws. ‘

In the present work we propose a numerical method for detining mathematical expectation and variance distributions
of the stochastic temperature field in a body of any dimensionality which is described by the stochastic stationary heat
conduction equation in terms of partial derivatives. All the coefficients that enter into the equation and into the boundary
conditions are random and obey arbitrary, truncated distribution laws. The probability characteristics of the stochastic
temperature field are derived in an analytical matrix form. The method is based on an application of technique {5] developed
by the authors to a system of stochastic matrix equations that were obtained after approximating an operator in partial
derivatives and boundary conditions by their difference analog. The error of the method is evaluated by the difference
approximation error of the equations of the mathematical model and the discretization region.

Stochastic Mathematical Model. The mathematical model describing the stochastic stationary temperature distribution
u(x, w) in the three-dimensional region D from R® with the boundary dD takes on the form

V(A (x, @) yuly, ©)+f(x, ©) =0, (x, ®)€D X Q, (H

with boundary conditions on 8D of one of the three forms:

u (x* 0)) - fl (xv (0)7 (X, (1))€ aD X Qs (2)
hin o) L 6, wp€aD x “
n
Ax, ®) —@%;;—ﬂ— +a(x, o) (u(x, @) —f3 ) =T ), (¥, ©)€dD X Q, (4)

where x = (x|, X9, X3)ED; NMx, w)>0, f(x, w), fi(x, w), 1 = 1, 2, 3, and a(x, w)>0 are assigned functions of xED =D
+ 3D which for each x €D are random independent quantities.
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In real bodies and in their systems the enumerated random functions at any x €D and » € Q vary within limited ranges.
Therefore, their probability densities are truncated, i.e., continuous within the intervals of variation of random functions and
equal to zero outside these intervals.

The random functions that enter into the mathematical model simulate: f(x, w) — the volumetric distributed heat source
with a random volumetric power density; f,(x, w) - the random temperature prescribed at the region boundary 3D; f,(x, w) —
the random surface power density at the region boundary; fi(x, w) — the random value of the surrounding medium’s
temperature; and a(x, w) — the random coefficient of heat transfer from the body surface into the medium.

Difference Approximation. For definiteness and clarity of formulation, we consider the difference approximation of
the stochastic heat conduction equation (1) with boundary condition (2) in the two-dimensional rectangular region D = {0 <
x <l and 0 <y < L}. Introduce into D a rectangular non-uniform grid with steps equal to h*,i=1,2...,N + 1along
the x-axis and hjy, j=12...,M + | along the y-axis. Nodes with numbers 0, N + 1, and M + 1 lie at the region
boundary aD. ’

The ditference scheme tor Egs. (1) and (2), which is derived by the integro-interpolation method [6], is valid for
each w€Q and has the form

Oty 5= (Bis -+ Suan -+ iy + &5 je) Ui+ Sivy sitins 5+ &t sy & ptts i+ [ =0, {5)
Uy (0) = 1 (X0, ¥ ©), Un=rj (©) = frlxngr gp ©) j=0, 1, oy M4 1 (6)
uio((’o) = fl (xiv Yo, (0), uivtw*}‘l ((0) = fl (xiv _1/M+i, 0.)), i= 0, 17 taey N "(L‘ 1y
where U = ulw) = u(x;, y;, w) is the stochastic temperature at the node i, j;
AY A
8ij=0;5(@) = ki L (@)——, &;5=¢;5(0) =} j- L (@) ’
2 h[ ' 2 h}y
X, Iy, ! (7)
[ > I —_7—
fi== Ty = { f(x, y, 0)dxdy.

!
9

X

i—

) —

x:,f»—

2

After moving the known boundary values of temperatures and free terms over to the right-hand side, one may write (5) in the
form of a system of stochastic linear algebraic equations

R(©)u(@) = —[f(0) — ¢ (o), 8)

where u(w) = (uy) ... Unp, Upa oo Unos 5 Uy -ee uNM)T is the stochastic vector of unknown temperatures at internal grid
nodes; R(w) is the stochastic three-diagonal symmetric n X n matrix (n = NM) with the block structure:

8, &
g 0, &

R (0) = o .

81

€y 61’\/1

in which matrices §; = 6i(w), i = 1, 2, ..., M are stochastic tri-diagonal symmetric matrices with the diagonal elements equal
W —(G; + Ogpqit & + Eier) k= 1,2, ..., Nand with the elements that are symmetric relative to the diagonal equal
o, =23, ..., N; matrices ¢; = e(w),i = 1,2, ..., M are the stochastic diagonal ones with elements g k=1,2, ..
N; and f(w) and ¢(w) are stochastic dimensional vectors of length n consisting of heat powers at grid nodes and of the known
temperatures at the region boundary, respectively.

We represent the matrix R(w) and vectors f(w) and ¢(w) as:

R@) = —AG() AT = — H (&), ©
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[ (@) = Af (o), (109)

¢ ((D) = - AG (0‘)) (P’ (0)), (l 1)
where A is a deterministic rectangular n X m matrix (m = 2NM + N + M) with the block structure:
T —EQ E
T —ECE
A= e
T —-EQ0 E
T —EL
T is a deterministic N X (N + 1) matrix of the form
1 —1
1 —1
T = 3
1 —10
- 11
E is a diagonal N X N unit matrix; 0 is a zero N X (N + ) matrix; G(w) is a stochastic diagonal m X m matrix with a
block structure with element-matrices arranged along the diagonal in the following order: §;, &, s, €5, ... , Oy, £y and
Ep+1: T'(w) and p'(w) are stochastic m-dimensional vectors.
In view of (9)-(11), the set of (8) will appear as follows
H (0) u(®) = Af" (0) — AG (0) ¢ (0). (12)

The elements g(w) of the stochastic matrix G(w) are assumed to be random quantities with different truncated distribution
laws. The elements g;; are statistically independent of each other and of the stochastic vectors t'(w) and ¢'(w). The vectors
t'(w) and ¢'(w) may be statistically dependent. Note that the condition | g; — g; | /8;<1 (where g; = M{g;(w)} is the
mathematical expectation of the random quantity g(w)) is always satisfied in practice,

The difference approximation of the mathematical-model equations leads to matrix equation (8) with the symmetric
matrix R irrespective of the dimensionality of the equations and of the region’s form. A representation of the matrix R in the
form of the product of three matrices (9), in the middle of which there is the diagonal matrix G, and of the vectors f and ¢
in the form of (10) and (11) may always be realized. In this case, the diagonal matrix G contains ¢lements determined in
terms of the thermophysical parameters of the region and houndary conditions, while the matrix A consists of elements 1, -1,
and 0. The matrix structure A is determined by the problem’s dimensionality and by the form of boundary conditions. It is
easy to understand the existence of the representation (9) if we interpret the grid covering the region as a graph with vertices
at grid nodes and with branches connecting these nodes, containing thermal resistances or conductances. Then, according to
the matrix-topological theory of electrical circuits [7], it is always possible to number the nodes and branches of the graph so
as to obtain the matrix representation of the system R in the form of (9).

Determination of the Probability Characteristics. We determine the probability characteristics of stochastic
temperatures at grid nodes, namely: the mathematical expectation vector & = M{u(w)} and the correlation matrix K =
M{u(w)uT(w)}, where u(w) is calculated from Eq. (12): u(w) = H‘l(w){Af’(w) — AG(w)¢'(w)}; M() is the mathematical
expectation operator. The covariance matrix C is predicted from the expression C = M{u%w)Ww)T} = K ~ aa’, and the
vector of variances D = M{(uo(w))z}, W(w) = vY%w) — 1, of stochastic temperatures at the grid nodes is equal to the
diagonal elements of matrix C.

The stochastic matrix equation (12) with the stochastic matrix H(w) = AG(w)AT was investigated in [5]. The reduced
expressions in [5] for vector @ and matrix K of stochastic temperatures at the nodes of the equivalent electrical circuit are
obtained under the assumption that M{(giio)k(gjjo)[} are negligible for all i # j, k, /=2; the comparison of u and K with the
calculations, performed by the Monte-Carlo method, showed their good agreement. If we do not neglect the mutual moments
of the quantities (giim‘), i =1,2...,m, k = 2, then the probability characteristics of the stochastic vector take on the form:
for the numerical expectation vector
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~ B(E—WF)J"—-Gg) — BW ¢’; R
and for the correlation matrix
K= B{Z —erW WF[1~—WZ — 75 M{WQW}}BT (14)

where £ = M{f'(0)}, ?' = M{g'(@)}, G = M{G(w)}; Z, = M{p(w)e (@)}, Z, = M{¢'(@)¢T(@)}, Z; = M{o'(w)¢ (@),
and p(w) = f'(w) — G¢'(w) are deterministic matrices; W is a deterministic matrix which is equal to the mathematical
expectation of the matrix stochastic series, i.e., W = M{Go(w) — GYw)FG%w) + GY%w)FG(w)FGO%(w)— ... Q= FZIF
+ ZoF + FZ,T + Zy is a deterministic symmetric m X m matrix; and B = (AGAT)'A, F = ATB are deterministic n X m
and m X m matrices, respectively.

The matrix series W converges almost surely for | BGOw)AT Il <1and, as a rule, with a sufficient accuracy we can
restrict overselves to terms of order not higher than (00)4. Then, taking into account the fact that

M{GOFGY} = F M {(G%)?), MA{GFGFGY) == F;M {(G°p}, M {GUFGDFGOFG"}-———FSM {(GY*y+U
where F is a deterministic diagonal matrix formed trom the elements f,; of matrix F; and U is a deterministic mxm matrix
j Mg M{ED%, i # k, and with the elements 6, = (£ + fk,fld(f,,)MfX

Ai
=y

with the diagonal elements Gy
{(gko)z}M{(gzo)2}’ we obtain
W——FW,—U M{WQW} - W Qg+ Vs,
where W, is a diagonal deterministic matrix with the elements
w; =M {(g?i)z(l - (ltiié’?z‘>3)/(l + fiig?i)};
V_V2 is a diagonal deterministic matrix with the elements
Wy 1 = MA{(g0)? — 2w (g0 ) + 3fF (gh)sh;

W, is a deterministic m X m matrix with the diagonal elements W, and W, ,, which are equal to:
Wy pp = 2 @l + Taqi) M {({3}0!{)2} M{(ghy, ik,

=

iz's,;l = 3sz‘7m + Frufa lqll i fkkfzzﬁllz T /szzth w) MA{(ger)*} M {(b//) 1%

and Qp, is a deterministic diagonal m X m matrix with the elements §; of matrix Q.

Example of the Application of the Method. Consider a stochastic one-dimensional stationary temperature field of
a body consisting of three contacting plates [ = [} + [, + /3 in length with different thermal conductivity coefficients and
internal heat sources. The thermal conductivity coefticient for the midplate, M (x, w), is 4 random function with M{)\20 (x;,
w))xzo(xi, w)} = 0 fori # jand each x,€10, L}; )\30 = A — )_\3. For each x;€[0, ], the thermal conductivities Ay j(w)
obey truncated normal distribution laws. The internal heat source power in the midplate, f5(x, (), is a random function with
the mathematical expectation £, and variance D and M‘il, X (w,}fq (xj, w)} = 0 fori # jand each x;€10, 5], fz =
fq At the left boundary of the body, there occurs hcat transter with a medium which has temperature u, and the random heat
transter coefficient c(w) obeying the uniform distribution law. The right boundary of the body is assigned the random
temperature ug(w) with the mathematical expectation 0, and variance D,, . Such a problem arises when analyzing a composite
rod, heat-insulated at the sides, and heated up by the electric current passing through it. If there is a statistical scatter in the
second rod length, then this randomness may be simulated by random thermal conductivity Ay(x, w) with deterministic rod
length.

The mathematical model takes on the form

0%y (x, ©)

p—TIE B L0, ()00, 1) X ©
Ox*
“0 (/* » (X, @))M + fa(x, w) =0, (x, ®}€{0, I,] x O,
ox ox
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Oy (x, ©)
dx?
Ouy (x, ®) e
Ox

h =0 (5 0)EN, L)X 2

by (@)u(x, ©)—uy), x=0, 0EQ,

Uy (x, ©)=u (o), x=1, ol

Dividing the body under consideration into nine intervals in such a way that each nodal point is contained in one
contro! volume (as is shown in Figure 1) and integrating the mathematical-model equations over each interval, we obtain their
discrete analog. The difference approximation of these equations may be written down in the matrix form (12)

H(0)u (o) = Af' (0) — AG (0) ¢' (@),
where H(w) is the stochastic matrix of the torm:

(@) +8 —&

—8, 8, + 8, —§,
H (o) = 8, 8,8 — 84
"63 63 + 64 (_('))
-8,
-8,
8, () + 85 (o) —8 (@)
8 (0) 8 (0) -8 O ;
“*645 61; + 67 ""67
—8; 8+ &
f'(w) and ¢’(w) are the stochastic vectors written as:
7111‘{‘]%((0) Ly+ f5(ls —Dg) B =
Folly— Do) + fa(@) Ly + Fs (s — Ag) 0
fl(A2+Aé)+fz(ﬂ))Zz+f3(l:;“'“As) 0
, T18s + [a(®) Ly + [5 (I3 — Bs) ") = 0 )
PO = (@) A5 5 5 (s — Ag) @ 0 |
T (@) As + 5 (I3 — Ag) 0
fa (Ag + As) 0
T30, 0
0 ] | tte (@)

A is the matrix of the form:

G(w) is a stochastic diagonal matrix with the diagonal elements equal to a(w), Aj/hy, N/hy, Aj/hq, M(wlhy, M(w)/hg, Ay/hg,
As/hy, and As/hg. Detining matrices entering into (13) and (14), we obtain vectors of the mathematical expectations @ and
variances D of stochastic temperatures at nodes 1, 2,..., 8 of the body. At node 9 the mathematical expectation of the
stochastic temperature tlg = G, and the variance of the stochastic temperature lg = D, .
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Figure 1 presents the calculations, performed by the suggested method, of dimensionless distributions of the
mathematical expectation ©, the r.m.s. deviation gy, and the upper boundary of the confidence interval ©, = @ + 1.96 o, for
the confidence probability 0.95 of the stochastic dimensionless temperature distribution 6(x, u) = (u(x, w)-u)/u,. The
dimensionless deterministic initial data have the following values: \,/A, = 10, \,/A, = 37, L/l, = 3, L/, = 4.5 f,/f, = £,/f,
= 1; and the probability characteristics of the random quantities aw), A\ (X, w), £(X, w), and u(w) have the following
dimensionless values: d /& = 0.8, a'l2 I\, = 0.8, d, /Ity = 1.0,and d, /i, = 0.45, whered, =

. — Wpip 18 the
scatter of the random quantity w.

max

Conclusion. The proposed numerical method allows one to determine the mathematical expectations and variances of
a stochastic temperature field described by a three-dimensional stochastic heat conduction equation and by the first-, second-,
and third-kind boundary conditions with random coefficients. The region, for which the probability characteristics of the
stochastic temperature field are to be defined, may be arbitrary. On the basis of the present method it is possible to develop
computer codes for analyzing stochastic temperature fields of complex objects.

NOTATION

u(x, w), stochastic temperature field; {2, space of elementary events w; R(w), stochastic matrix of the system; G(w),
stochastic diagonal matrix of the system parameters; A, matrix of incidences; U, vector of mathematical expectations; K, C,
correfation and covariance matrices.
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